1.1 Entanglement Entropy by Hadamard Test#


Multiple Experiments#

Consider a scenario, you have multiple circuits that you want to run at once.

Call .measure() one by one will be inefficient, no to mention that you also need to call .analyze() for their post-processing.

Here we provide a more efficient way solve this problem, where the true power of Qurrium as experiment manage toolkit.

a. Import the instances#

from qurry import EntropyMeasure

experiment_hadamard = EntropyMeasure(method="hadamard")

b. Preparing quantum circuit#

Prepare and add circuits to the .wave for later usage.

from qiskit import QuantumCircuit
from qurry.recipe import TrivialParamagnet, GHZ


def make_neel_circuit(n):
    qc = QuantumCircuit(n)
    for i in range(0, n, 2):
        qc.x(i)
    return qc


for i in range(2, 8, 2):
    experiment_hadamard.add(TrivialParamagnet(i), f"trivial_paramagnet_{i}")
    experiment_hadamard.add(GHZ(i), f"ghz_{i}")
    experiment_hadamard.add(make_neel_circuit(i), f"neel_{i}")

experiment_hadamard.waves
WaveContainer({
  'trivial_paramagnet_2': <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x7f6ab3aec590>,
  'ghz_2': <qurry.recipe.simple.cat.GHZ object at 0x7f6ab3aec6e0>,
  'neel_2': <qiskit.circuit.quantumcircuit.QuantumCircuit object at 0x7f6ab3ae97f0>,
  'trivial_paramagnet_4': <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x7f6ab3b82c10>,
  'ghz_4': <qurry.recipe.simple.cat.GHZ object at 0x7f6ab3b82d50>,
  'neel_4': <qiskit.circuit.quantumcircuit.QuantumCircuit object at 0x7f6ab3ae9a90>,
  'trivial_paramagnet_6': <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x7f6ab3b82e90>,
  'ghz_6': <qurry.recipe.simple.cat.GHZ object at 0x7f6ab3b82fd0>,
  'neel_6': <qiskit.circuit.quantumcircuit.QuantumCircuit object at 0x7f6ab3ae98d0>})

c. Execute multiple experiments at once#

Let’s demonstrate the true power of Qurrium.

from qurry.qurrent.hadamard_test.arguments import EntropyMeasureHadamardMeasureArgs

Preparing a configuration list for multiple experiments with following parameters:

class EntropyMeasureHadamardMeasureArgs(total=False):
    """Output arguments for :meth:`output`."""
    shots: int
    """Number of shots."""
    tags: Optional[tuple[str, ...]]
    """The tags to be used for the experiment."""
    wave: Optional[Union[QuantumCircuit, Hashable]]
    """The key or the circuit to execute."""
    degree: Optional[Union[int, tuple[int, int]]]
    """The degree range."""
config_list: list[EntropyMeasureHadamardMeasureArgs] = [
    {
        "shots": 1024,
        "wave": f"{wave_names}_{i}",
        "degree": i // 2,
        "tags": (wave_names, f"size_{i}", f"system_range_{i//2}"),
    }
    for _ in range(10)
    for i in range(2, 8, 2)
    for wave_names in ["trivial_paramagnet", "ghz", "neel"]
]
print(len(config_list))
90

The .multiOutput will return an id of this multimanager instance, which can be used to get the results and post-process them.

Each multimanager will export the experiments in a folder you can specify by setting save_location parameter with default location for current directory where Python executed. It will create a folder with the name of the multimanager instance, and inside it will create a folder for storing each experiment data.

It will do firstly in the building process, but you can skip it by setting skip_build_write=True to save time. After all experiments are executed, it will export secondly, which can also be skipped by setting skip_output_write=True for no files output.

multi_exps1 = experiment_hadamard.multiOutput(
    config_list,
    summoner_name="qurrent.hadamard_test",  # you can name it whatever you want
    multiprocess_build=True,
    # Using multiprocessing to build the experiments,
    # it will be faster but take all the CPU
    skip_build_write=True,
    # Skip the writing of the experiment as files during the build,
    save_location=".",
    # Save the experiment as files in the current directory
    multiprocess_write=True,
    # Writing the experiment as files using multiprocessing,
)
multi_exps1
| MultiManager building...
| Write "qurrent.hadamard_test.001", at location "qurrent.hadamard_test.001"
| MultiOutput running...
| Auto analysis is called, running analysis...
| Export multimanager...
| Export multi.config.json for 6024bbc2-99ea-4bb8-be8f-314a46917107
| Exporting qurrent.hadamard_test.001/qurryinfo.json...
| Exporting qurrent.hadamard_test.001/qurryinfo.json done.
'6024bbc2-99ea-4bb8-be8f-314a46917107'

You can check the result of multiOutput that we just executed by accessing the .multimanagers

experiment_hadamard.multimanagers
MultiManagerContainer(num=1, {
  "6024bbc2-99ea-4bb8-be8f-314a46917107":
    <MultiManager(name="qurrent.hadamard_test.001", jobstype="local", ..., exps_num=90)>,
})
experiment_hadamard.multimanagers[multi_exps1]
<MultiManager(id="6024bbc2-99ea-4bb8-be8f-314a46917107",
  name="qurrent.hadamard_test.001",
  tags=(),
  jobstype="local",
  pending_strategy="tags",
  last_events={
    'output.001': '2025-06-26 11:47:35',
    'auto_report': '2025-06-26 11:47:36',},
  exps_num=90)>

d. Get all post-processing result#

Since .analyze in Hadamard Test doesn’t require any arguments, which we mentioned in Basic Usage, it will be excuted automatically. So you can access the result like the following:

print("| Available results:")
for k, v in (
    experiment_hadamard.multimanagers[multi_exps1]
    .quantity_container["auto_report"]
    .items()
):
    print("| -", k, "with length", len(v))
| Available results:
| - ('trivial_paramagnet', 'size_6', 'system_range_3') with length 10
| - ('ghz', 'size_6', 'system_range_3') with length 10
| - ('neel', 'size_6', 'system_range_3') with length 10
| - ('trivial_paramagnet', 'size_4', 'system_range_2') with length 10
| - ('ghz', 'size_4', 'system_range_2') with length 10
| - ('neel', 'size_4', 'system_range_2') with length 10
| - ('trivial_paramagnet', 'size_2', 'system_range_1') with length 10
| - ('ghz', 'size_2', 'system_range_1') with length 10
| - ('neel', 'size_2', 'system_range_1') with length 10
  • Example of the content of quantity_container

experiment_hadamard.multimanagers[multi_exps1].quantity_container["auto_report"][
    ("trivial_paramagnet", "size_4", "system_range_2")
][:2]
[{'purity': 1.0,
  'entropy': np.float64(-0.0),
  'input': {},
  'header': {'serial': 0, 'datetime': '2025-06-26 11:47:36', 'log': {}}},
 {'purity': 1.0,
  'entropy': np.float64(-0.0),
  'input': {},
  'header': {'serial': 0, 'datetime': '2025-06-26 11:47:36', 'log': {}}}]

e. Run post-processing at once with specific analysis arguments#

At first, we need to get the each experiment’s id in the multimanager instance.

expkeys_of_multi_exps1 = list(
    experiment_hadamard.multimanagers[multi_exps1].exps.keys()
)
print("| The number of exp_id:", len(expkeys_of_multi_exps1))
print("| First 3 experiment keys:")
expkeys_of_multi_exps1[:3]
| The number of exp_id: 90
| First 3 experiment keys:
['bdf23d75-dcb2-40e0-b9d6-23865556b39a',
 '40242fdc-48b8-4968-a585-16c728be1c71',
 '85fe8932-7d6b-4588-a5a5-379317481c64']
  1. If you want to run the post-processing for some specific experiments, for example, the first 3 experiments we get for the multimanager instance.

experiment_hadamard.multiAnalysis(
    summoner_id=multi_exps1,
    analysis_name="first_3",
    skip_write=True,
    multiprocess_write=False,
    specific_analysis_args={k: idx < 3 for idx, k in enumerate(expkeys_of_multi_exps1)},
    # Give False by `idx < 3` to skip analysis for this experiment
)
| "first_3.001" has been completed.
'6024bbc2-99ea-4bb8-be8f-314a46917107'
print("| Available results:")
print(
    "| length:",
    sum(
        len(v)
        for v in experiment_hadamard.multimanagers[multi_exps1]
        .quantity_container["first_3.001"]
        .values()
    ),
)
| Available results:
| length: 3
  1. Or manually specify all the analysis arguments for each experiment.

experiment_hadamard.multiAnalysis(
    summoner_id=multi_exps1,
    skip_write=False,
    analysis_name="all_manual",
    multiprocess_write=True,
    specific_analysis_args={k: {} for idx, k in enumerate(expkeys_of_multi_exps1)},
)
| "all_manual.001" has been completed.
| Export multimanager...
| Export multi.config.json for 6024bbc2-99ea-4bb8-be8f-314a46917107
| Exporting qurrent.hadamard_test.001/qurryinfo.json...
| Exporting qurrent.hadamard_test.001/qurryinfo.json done.
'6024bbc2-99ea-4bb8-be8f-314a46917107'
print("| Available results:")
print(
    "| length:",
    sum(
        len(v)
        for v in experiment_hadamard.multimanagers[multi_exps1]
        .quantity_container["all_manual.001"]
        .values()
    ),
)
| Available results:
| length: 90

All multiAnalysis results#

experiment_hadamard.multimanagers[multi_exps1].quantity_container.keys()
dict_keys(['auto_report', 'first_3.001', 'all_manual.001'])

f. Read exported multimanager data#

multi_exps1_reades = experiment_hadamard.multiRead(
    save_location=".",
    summoner_name="qurrent.hadamard_test.001",
)
| Retrieve qurrent.hadamard_test.001...
| at: qurrent.hadamard_test.001

Post-Process Availablities and Version Info#

from qurry.process import AVAIBILITY_STATESHEET

AVAIBILITY_STATESHEET
 | Qurrium version: 0.13.0
---------------------------------------------------------------------------
 ### Qurrium Post-Processing
   - Backend Availability ................... Python Cython Rust   JAX   
 - randomized_measure
   - entangled_entropy.entropy_core_2 ....... Yes    Depr.  Yes    No    
   - entangle_entropy.purity_cell_2 ......... Yes    Depr.  Yes    No    
   - entangled_entropy_v1.entropy_core ...... Yes    Depr.  Yes    No    
   - entangle_entropy_v1.purity_cell ........ Yes    Depr.  Yes    No    
   - wavefunction_overlap.echo_core_2 ....... Yes    Depr.  Yes    No    
   - wavefunction_overlap.echo_cell_2 ....... Yes    Depr.  Yes    No    
   - wavefunction_overlap_v1.echo_core ...... Yes    Depr.  Yes    No    
   - wavefunction_overlap_v1.echo_cell ...... Yes    Depr.  Yes    No    
 - hadamard_test
   - purity_echo_core ....................... Yes    No     Yes    No    
 - magnet_square
   - magnsq_core ............................ Yes    No     Yes    No    
 - string_operator
   - strop_core ............................. Yes    No     Yes    No    
 - classical_shadow
   - rho_m_core ............................. Yes    No     No     Yes   
 - utils
   - randomized ............................. Yes    Depr.  Yes    No    
   - counts_process ......................... Yes    No     Yes    No    
   - bit_slice .............................. Yes    No     Yes    No    
   - dummy .................................. Yes    No     Yes    No    
   - test ................................... Yes    No     Yes    No    
---------------------------------------------------------------------------
   + Yes ...... Working normally.
   + Error .... Exception occurred.
   + No ....... Not supported.
   + Depr. .... Deprecated.
---------------------------------------------------------------------------
by <Hoshi>