2.2 Wave Function Overlap by Randomized Measurement#
Basic Usage#
a. Import the instances#
from qurry import WaveFunctionOverlap
experiment_randomized = WaveFunctionOverlap()
# It's default method. WaveFunctionOverlap(method='randomized') also works
# or another short name
# from qurry import EchoListen
# experiment_hadamard = EchoListen()
b. Preparing quantum circuit#
from qiskit import QuantumCircuit
from qurry.recipe import TrivialParamagnet, GHZ
sample01 = TrivialParamagnet(8)
print("| trivial paramagnet in 8 qubits:")
print(sample01)
| trivial paramagnet in 8 qubits:
┌───┐
q_0: ┤ H ├
├───┤
q_1: ┤ H ├
├───┤
q_2: ┤ H ├
├───┤
q_3: ┤ H ├
├───┤
q_4: ┤ H ├
├───┤
q_5: ┤ H ├
├───┤
q_6: ┤ H ├
├───┤
q_7: ┤ H ├
└───┘
sample02 = GHZ(8)
print("| GHZ in 8 qubits:")
print(sample02)
| GHZ in 8 qubits:
┌───┐
q_0: ┤ H ├──■────────────────────────────────
└───┘┌─┴─┐
q_1: ─────┤ X ├──■───────────────────────────
└───┘┌─┴─┐
q_2: ──────────┤ X ├──■──────────────────────
└───┘┌─┴─┐
q_3: ───────────────┤ X ├──■─────────────────
└───┘┌─┴─┐
q_4: ────────────────────┤ X ├──■────────────
└───┘┌─┴─┐
q_5: ─────────────────────────┤ X ├──■───────
└───┘┌─┴─┐
q_6: ──────────────────────────────┤ X ├──■──
└───┘┌─┴─┐
q_7: ───────────────────────────────────┤ X ├
└───┘
sample03 = QuantumCircuit(8)
sample03.x(range(0, 8, 2))
print("| Custom circuit:")
print(sample03)
| Custom circuit:
┌───┐
q_0: ┤ X ├
└───┘
q_1: ─────
┌───┐
q_2: ┤ X ├
└───┘
q_3: ─────
┌───┐
q_4: ┤ X ├
└───┘
q_5: ─────
┌───┐
q_6: ┤ X ├
└───┘
q_7: ─────
c. Execute the circuit#
i. Directly input the circuit#
After executing, it will return a uuid of experiment. You can use this uuid to get the result of the experiment.
exp1 = experiment_randomized.measure(sample01, sample01, times=100, shots=4096)
exp1
'b1ff9de2-0ba3-478f-98c9-cc61eb290d13'
Each experiment result will be stored in a container .exps
.
experiment_randomized.exps[exp1]
<EchoListenRandomizedExperiment(exp_id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13,
EchoListenRandomizedArguments(exp_name='experiment.N_U_100.qurrech_randomized', times=100, qubits_measured_1=[0, 1, 2, 3, 4, 5, 6, 7], qubits_measured_2=[0, 1, 2, 3, 4, 5, 6, 7], registers_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, registers_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, actual_num_qubits_1=8, actual_num_qubits_2=8, unitary_located_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, unitary_located_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, second_backend=None, second_transpile_args=None, random_unitary_seeds=None),
Commonparams(exp_id='b1ff9de2-0ba3-478f-98c9-cc61eb290d13', target_keys=[0, 1], shots=4096, backend=<AerSimulator('aer_simulator')>, run_args={}, transpile_args={}, tags=(), save_location=PosixPath('.'), serial=None, summoner_id=None, summoner_name=None, datetimes=DatetimeDict({'build': '2025-06-26 11:45:46', 'run.001': '2025-06-26 11:45:46'})),
unused_args_num=0,
analysis_num=0))>
experiment_randomized.exps[exp1].args._asdict()
{'exp_name': 'experiment.N_U_100.qurrech_randomized',
'times': 100,
'qubits_measured_1': [0, 1, 2, 3, 4, 5, 6, 7],
'qubits_measured_2': [0, 1, 2, 3, 4, 5, 6, 7],
'registers_mapping_1': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'registers_mapping_2': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'actual_num_qubits_1': 8,
'actual_num_qubits_2': 8,
'unitary_located_mapping_1': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'unitary_located_mapping_2': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'second_backend': None,
'second_transpile_args': None,
'random_unitary_seeds': None}
And use this uuid to access the experiments to execute post-processing.
report01 = experiment_randomized.exps[exp1].analyze(
selected_classical_registers=[0, 1, 2, 3],
)
report01
<ELRAnalysis(
serial=0,
ELRAnalysisInput(registers_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, registers_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, bitstring_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, bitstring_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, shots=4096, unitary_located_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, unitary_located_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}),
ELRAnalysisContent(echo=1.0222416800260543, and others)),
unused_args_num=0
)>
main01, side_product01 = report01.export()
main01
{'echo': np.float64(1.0222416800260543),
'echoSD': np.float64(0.9954789763938757),
'num_classical_registers': 8,
'classical_registers': [0, 1, 2, 3],
'classical_registers_actually': [0, 1, 2, 3],
'counts_num': 100,
'taking_time': 0.002551107,
'counts_used': None,
'input': {'registers_mapping_1': {0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: 7},
'registers_mapping_2': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'bitstring_mapping_1': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'bitstring_mapping_2': {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7},
'shots': 4096,
'unitary_located_mapping_1': {0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: 7},
'unitary_located_mapping_2': {0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: 7}},
'header': {'serial': 0, 'datetime': '2025-06-26 11:45:47', 'log': {}}}
ii. Add the circuits to container .waves
, then call them later.#
Since we have executed an experiment, the circuit we input in exp1
is stored in the container .waves
with serial number 0
.
experiment_randomized.waves
WaveContainer({
0: <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x775155ae4590>,
1: <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x775155ae4590>})
But we can also add the circuit to the container .waves
with a custom name.
The name should be unique, otherwise it will be overwritten.
The method add
will return the actual name of the circuit in the container.
print(experiment_randomized.add(sample02, "ghz_8"))
print(experiment_randomized.waves["ghz_8"])
ghz_8
┌───┐
q_0: ┤ H ├──■────────────────────────────────
└───┘┌─┴─┐
q_1: ─────┤ X ├──■───────────────────────────
└───┘┌─┴─┐
q_2: ──────────┤ X ├──■──────────────────────
└───┘┌─┴─┐
q_3: ───────────────┤ X ├──■─────────────────
└───┘┌─┴─┐
q_4: ────────────────────┤ X ├──■────────────
└───┘┌─┴─┐
q_5: ─────────────────────────┤ X ├──■───────
└───┘┌─┴─┐
q_6: ──────────────────────────────┤ X ├──■──
└───┘┌─┴─┐
q_7: ───────────────────────────────────┤ X ├
└───┘
If there is a circuit with the same name, it will be replaced by the new one.
print(experiment_randomized.add(sample03, "ghz_8"))
print(experiment_randomized.waves["ghz_8"])
ghz_8
┌───┐
q_0: ┤ X ├
└───┘
q_1: ─────
┌───┐
q_2: ┤ X ├
└───┘
q_3: ─────
┌───┐
q_4: ┤ X ├
└───┘
q_5: ─────
┌───┐
q_6: ┤ X ├
└───┘
q_7: ─────
Otherwise, you will need to use replace="duplicate"
to prevent it from being replaced.
duplicated_case01 = experiment_randomized.add(sample02, "ghz_8", replace="duplicate")
print(duplicated_case01)
print(experiment_randomized.waves[duplicated_case01])
ghz_8.3
┌───┐
q_0: ┤ H ├──■────────────────────────────────
└───┘┌─┴─┐
q_1: ─────┤ X ├──■───────────────────────────
└───┘┌─┴─┐
q_2: ──────────┤ X ├──■──────────────────────
└───┘┌─┴─┐
q_3: ───────────────┤ X ├──■─────────────────
└───┘┌─┴─┐
q_4: ────────────────────┤ X ├──■────────────
└───┘┌─┴─┐
q_5: ─────────────────────────┤ X ├──■───────
└───┘┌─┴─┐
q_6: ──────────────────────────────┤ X ├──■──
└───┘┌─┴─┐
q_7: ───────────────────────────────────┤ X ├
└───┘
Now we have prepared the circuit and stored it in the container .waves
.
experiment_randomized.waves
WaveContainer({
0: <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x775155ae4590>,
1: <qurry.recipe.simple.paramagnet.TrivialParamagnet object at 0x775155ae4590>,
'ghz_8': <qiskit.circuit.quantumcircuit.QuantumCircuit object at 0x775155ae1010>,
'ghz_8.3': <qurry.recipe.simple.cat.GHZ object at 0x775155ae63c0>})
Finally, we can execute the circuit and get the result.
exp2 = experiment_randomized.measure("ghz_8.3", sample01, times=100, shots=4096)
exp2
'1efa40ac-a65f-458d-9cbf-d0adc330d4d5'
experiment_randomized.exps[exp2]
<EchoListenRandomizedExperiment(exp_id=1efa40ac-a65f-458d-9cbf-d0adc330d4d5,
EchoListenRandomizedArguments(exp_name='experiment.N_U_100.qurrech_randomized', times=100, qubits_measured_1=[0, 1, 2, 3, 4, 5, 6, 7], qubits_measured_2=[0, 1, 2, 3, 4, 5, 6, 7], registers_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, registers_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, actual_num_qubits_1=8, actual_num_qubits_2=8, unitary_located_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, unitary_located_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, second_backend=None, second_transpile_args=None, random_unitary_seeds=None),
Commonparams(exp_id='1efa40ac-a65f-458d-9cbf-d0adc330d4d5', target_keys=['ghz_8.3', 4], shots=4096, backend=<AerSimulator('aer_simulator')>, run_args={}, transpile_args={}, tags=(), save_location=PosixPath('.'), serial=None, summoner_id=None, summoner_name=None, datetimes=DatetimeDict({'build': '2025-06-26 11:46:01', 'run.001': '2025-06-26 11:46:01'})),
unused_args_num=0,
analysis_num=0))>
report02 = experiment_randomized.exps[exp2].analyze(
selected_classical_registers=[0, 1, 2, 3],
)
report02
<ELRAnalysis(
serial=0,
ELRAnalysisInput(registers_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, registers_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, bitstring_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, bitstring_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, shots=4096, unitary_located_mapping_1={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}, unitary_located_mapping_2={0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7}),
ELRAnalysisContent(echo=0.06789519727230071, and others)),
unused_args_num=0
)>
d. Export them after all#
exp1_id, exp1_files_info = experiment_randomized.exps[exp1].write(
save_location=".", # where to save files
)
exp1_files_info
{'folder': 'experiment.N_U_100.qurrech_randomized.001',
'qurryinfo': 'experiment.N_U_100.qurrech_randomized.001/qurryinfo.json',
'args': 'experiment.N_U_100.qurrech_randomized.001/args/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.args.json',
'advent': 'experiment.N_U_100.qurrech_randomized.001/advent/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.advent.json',
'legacy': 'experiment.N_U_100.qurrech_randomized.001/legacy/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.legacy.json',
'tales.unitaryOP': 'experiment.N_U_100.qurrech_randomized.001/tales/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.unitaryOP.json',
'tales.randomized': 'experiment.N_U_100.qurrech_randomized.001/tales/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.randomized.json',
'reports': 'experiment.N_U_100.qurrech_randomized.001/reports/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.reports.json',
'reports.tales.echoCells': 'experiment.N_U_100.qurrech_randomized.001/tales/experiment.N_U_100.qurrech_randomized.001.id=b1ff9de2-0ba3-478f-98c9-cc61eb290d13.echoCells.reports.json'}
Post-Process Availablities and Version Info#
from qurry.process import AVAIBILITY_STATESHEET
AVAIBILITY_STATESHEET
| Qurrium version: 0.13.0
---------------------------------------------------------------------------
### Qurrium Post-Processing
- Backend Availability ................... Python Cython Rust JAX
- randomized_measure
- entangled_entropy.entropy_core_2 ....... Yes Depr. Yes No
- entangle_entropy.purity_cell_2 ......... Yes Depr. Yes No
- entangled_entropy_v1.entropy_core ...... Yes Depr. Yes No
- entangle_entropy_v1.purity_cell ........ Yes Depr. Yes No
- wavefunction_overlap.echo_core_2 ....... Yes Depr. Yes No
- wavefunction_overlap.echo_cell_2 ....... Yes Depr. Yes No
- wavefunction_overlap_v1.echo_core ...... Yes Depr. Yes No
- wavefunction_overlap_v1.echo_cell ...... Yes Depr. Yes No
- hadamard_test
- purity_echo_core ....................... Yes No Yes No
- magnet_square
- magnsq_core ............................ Yes No Yes No
- string_operator
- strop_core ............................. Yes No Yes No
- classical_shadow
- rho_m_core ............................. Yes No No Yes
- utils
- randomized ............................. Yes Depr. Yes No
- counts_process ......................... Yes No Yes No
- bit_slice .............................. Yes No Yes No
- dummy .................................. Yes No Yes No
- test ................................... Yes No Yes No
---------------------------------------------------------------------------
+ Yes ...... Working normally.
+ Error .... Exception occurred.
+ No ....... Not supported.
+ Depr. .... Deprecated.
---------------------------------------------------------------------------
by <Hoshi>